ICS

이배보안연구원

Kyushu Univ, Kyushu, Japan, Jan. 30(Mon.), 2023.

Al for Intrusion Detection and Privacy-preserving

Prof. Kwangjo Kim IACR Fellow

Emeritus Professor@KAIST / President@IRCS

KAIST

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><section-header><section-header><text>

Contents Learning-Based IDSs Generative S.1.1 Deep Neural Network S.1.2 Accelerated Deep Neural Network S.1.3 Stacked Deep Neural Network S.1.4 Stacked Deep Neural Network S.1.5 Long Short-Term Memory Recurrent Neural Network S.1 Deep Neural Network in Schwarz-Defined Network S.1 Deep Neural Network in Schwarz-Defined Network S.2 Deep Neural Network in Schwarz-Defined Network S.3 Deep Neural Network Neural Network S.3 Deep Neural Network Neural S.3 Deep Neural Network S.3 Deep Network 1 Introduction References 5 Deep Lea 5.1 Ge 1 4 35 35 36 37 38 38 38 39 40 40 41 42 42 42 43 43 44 Intrusion Detection Systems 5 2.1 Definition 5 2.2 Classification 5 2.3 Benchmark 5 2.3 Landow 5 2.5.2 Pathic Dataset 9 References 10 76 77 77 78 5.2 References 10 3 Classical Machine Learning and Its Applications to IDS. 13 3.1 Classification of Machine Learning. 13 3.1.1 Supervised Learning. 13 3.1.2 Classification of Machine Learning. 13 3.1.3 Userservised Learning. 13 3.1.4 Userservised Learning. 15 3.1.5 Reinforcement Learning. 16 3.1.4 Weakly Supervised Learning. 20 3.1.6 Adversarial Machine Learning. 20 3.1.6 Adversarial Machine Learning. 21 References. 24 5.3 5.4 5.5 Reference Image: Control Contr 47 47 48 52 59 62 63 65 67 Rereference 4.1 Classification 4.2 Classification 4.2 Classification 4.2 Classification 4.2 Represented Usupgressing Learning) 4.2 Stacked (Spanse) Auto-Encoder 4.2.3 Sum-Product Networks 4.2.4 Recurrent Neural Networks 4.3 Discriminative 4.3 Discriminative 27 27 28 30 30 30 32 32 32 33 6.3 Refer Appendix A A Survey on Malware Detection from Deep Learning 71 A.1 Automatic Analysis of Malware Rehavior 4.3 4.4 Hybrid 4.4.1 Generative Adversarial Networks (GAN) Refe xi ICS 5 KAIST 국제사이버보안연구원

Global Attacks in 2016 (1/2)

Global Attack in 2016 (2/2) A major recommendation in the guidance above is to deploy a wireless intrusion detection system (WIDS) and wireless intrusion prevention system (WIPS) on every network, even when wireless access to that network is not offered, to detect and automatically disconnect devices using unauthorized wireless services. A Guide to Securing Networks for Wi-Fi (IEEE 802.11 Family) Department of Homeland Security Cybersecurity Engineering DDoS Becurity PKG=ov57325 ICS KAIST

Types of IDS (methodology) (2/2)
 Misuse-based: detects any attack by checking whether the attack characteristics match previously stored signatures or patterns. This also known as signature-based IDS.
 Anomaly-based: identifies malicious activities by profiling normal behavior and then measuring any deviation from it. It leverages statistical analysis or machine-learning.
• <i>Specification-based</i> : manually defines a set of rules and constraints to express the normal operations. Any violation of the rules and constraints during execution is flagged as an attack.
9 स्टि न्स् न्यारणामध्येथन्

Comparion of	IDS					
		Misuse-based	Anomaly-based	Specification-based		
	Method	Identify known attack patt erns	Identify unusual acti vity patterns	Identify violation of pre-defin ed rules		
	Detection Rate	High	Low	High		
	False Alarm Rate	Low	High	Low		
	Unknown Attack Detecti on	Incapable	Capable	Incapable		
	Drawbacks	Updating signatures is burd ensome	Computing any statistical or machine- learning is h eavy	Relying on expert knowled ge to define rules is undesira ble		
KAIST					10	국제사이버보안연구원
•						

Learning : Supervised vs Unsupervised											
• Unknown attack	detection: De	tects new attacks with	nout prior knowledge								
	Deficition	The data are labeled with pre-defined	The data are labeled without pre-defined								
	Method	classes.	classes								
	Example	Support Vector Machine (SVM) Decision Tree (DT) Fuzzy Inference System (FIS)	Clustering Armeans Clustering, Density-based Spatial Clustering of Applications with Noise (DBSCAN) Ant Clustering Algorithm (ACA)								
	Known Attack DR	High	Low								
	Unknown Attack DR	Low	High								
KAIST				11	국제사이버보안연구원						

Common IDS vs Novel D-FES											
		Common IDS	Novel D-FES								
	Scheme	Input Data Hundreds of features Machine Learner Classifier	D-ES								
	Pros	Faster for training task	More meaningful features are observed from extracted featur es Lightweight input for the classifier Faster for classification task Higher accuracy Higher detection								
	Cons	Slower for classification task Lower accuracy Lower detection	Slower for training task								
KAIST				국제사이배보안연구원							

D-FES Source Code (1/3)

<form><form>

KAIST

man:.use,st).t);
max.use,st).t);
max.use,

82

국제사이버보안연구원

제사이버보안연구원

24

23

D-FES Source Code (2/3)

per-section of the section of t

Sector Sector

KAIST

<form>

Sections: their if the start process of the section of the se

D-FES Source-Code (3/3)

Comparison

- 1. SAE as a classifier (WISA16)
- 2. Combination of feature extraction and selection (IEEE IF&S18)
- 3. SAE as clustering method (WISA17)

				AW	ID Dat	aset			
Method	DR (%)	FAR (%)		Normal	Impersonation	Flooding	Injection		
1	65.178	0.143	+5000	100.010	Balanc	ed	05.070		
2	99.918	0.012	Test	53,078	48,522 20,079	48,484 8,097	16,682		
3	92 180	4 400	- 10 M.C	1 000 100	Unbalar	iced	05.070		
Kallan at al X	22.000	0.001	Test	1,633,190	48,522 20,079	48,484 8,097	16,682		
			*) Kolias, Con cal evaluation	stantinos, et a of threats and	l., "Intrusion detecti a public dataset," I	ion in 802.11 r IEEE Commun	networks: empir nications Surve	i	
			s & Tutorials,	vol:18.1, pp: 1	84-208, 2015.				
Т									

